WillyLogan.com

Technology, History, and Place

Tag: rocketry

The cosmic traveler

Sixty years ago today, for the first time in history, a human boarded a rocket and flew into the cosmos beyond the Earth’s atmosphere. The first-ever traveler into space was a 27-year-old Russian pilot named Yuri Gagarin, and he embarked on his cosmic journey from the Tyura-Tam missile range in the Kazakhstan region of the Soviet Union.

By any measure, Gagarin’s flight was a remarkable technical accomplishment. In a matter of decades, Russia had gone from an agrarian country ruled by Europe’s last autocrats to the world’s first space power. In the 1930s and 1940s, Soviet engineers had made modest progress with developing rockets, primarily for military use but also to pursue the dream of human spaceflight first expressed by Russia’s pioneering space visionary Konstantin Tsiolkovsky, who died in 1935. After World War II, captured German rockets and some German engineers provided valuable technical knowledge to the Soviet rocketry program. In the late 1940s, the Soviets flew copies of the German V-2 missile, which they called the R-1. Later, they modified the design of the R-1 into the higher-performance R-2 missile, then set about to make their own wholly original designs. By 1957, the Soviets had the world’s first intercontinental ballistic missile, the R-7. After a couple of successful test launches, an R-7 deposited into orbit the world’s first artificial satellite, PS-1 or Sputnik 1, on October 4, 1957.

The R-7 had the power only to launch small payloads into orbit, but a modified version with an added upper stage could launch a spacecraft big enough to carry a man. The rocket and the spacecraft were both dubbed Vostok (“East”). The spacecraft consisted of two parts: a spherical crew compartment and a cone-shaped instrumentation module. The crew compartment carried the cosmonaut (“traveler to the cosmos,” a Soviet or Russian astronaut) into space and back down into the atmosphere, while the instrumentation module was designed to separate from the crew compartment and burn up in the atmosphere on reentry.

Both the United States and the Soviet Union were preparing to launch people into space in the late 1950s and early 1960s, but the two countries took different approaches to their programs in many respects. One of these was publicity. As I’ll write about next month on the anniversary of the first American’s flight into space, the US government conducted its space program in full view of journalists and the public, and the first astronauts were made into instant celebrities.

The Soviets, on the other hand, operated their program in the utmost secrecy. They didn’t even announce the launch of Sputnik 1 until after the satellite had completed its first orbit of the Earth. (Meanwhile, the first American attempt at launching a satellite, Vanguard 1, blew up on television.) While the American astronauts blinked in the daily glare of spotlights and flashbulbs, the first group of Soviet cosmonauts were selected and began training in secret. As the first man in space, Yuri Gagarin would become a celebrity—paraded in Red Square in front of adoring Soviet crowds and sent on international tours—but it was only after his launch that the public even knew his name.

Because of this secrecy, the Soviet public and the wider world could only know about Vostok and other early programs through Soviet propaganda, which portrayed every cosmonaut as a model communist and every mission as a triumph of socialism. It would not be until thirty years after Gagarin’s flight, with the breakup of the Soviet Union in 1991, that the archives would start to open, giving researchers the chance to view actual documents rather than propagandistic distortions.

In the intervening thirty years, as Asif Siddiqi notes in the preface to his book Challenge to Apollo: The Soviet Union and the Space Race, 1945-1974, early Soviet space accomplishments had become mythologized in Russia and dismissed in the West as mere background to the first American landing on the moon in 1969. “It is not surprising that this is so,” Siddiqi writes. “With little film footage, paranoid secrecy, and no advance warning, the Soviets themselves were mostly responsible for consigning these events into that blurry historical limbo between propaganda and speculation. They eventually lost any claim to resonance that they might have had otherwise.”

As the anniversary of Gagarin’s flight, April 12 is celebrated as Cosmonautics Day in Russia and by some space enthusiasts around the world as Yuri’s Night (although if you ask me, I prefer to call it Cosmonautics Day). There will certainly be official commemorations of the anniversary in Russia today, and just as certainly there won’t be any commemoration of it on an official level in the United States. Rather than seeing the flight as a human accomplishment—the first time in history that a member of our species left this planet—Americans continue to view Gagarin’s flight through the lens of Cold War competition.

The Space Race continues to dominate American perceptions of the Space Age, even though there has been far more cooperation than competition between Russia and the United States in human spaceflight. The Space Race lasted at most thirty-four years, from the launch of Sputnik 1 in 1957 to the fall of the Soviet Union in 1991. Even during the period of competition, US-Russian cooperation in space began with the Apollo-Soyuz Test Project in 1975. After the fall of the Soviet Union, space cooperation continued with Shuttle-Mir in the 1990s and the International Space Station from 2000 to present. Rather than seeing Yuri Gagarin as a Cold War enemy, it’s time for Americans to start thinking of him as a future friend in space.

Apollo-Soyuz Test Project American and Soviet crews

The first joint US-Russian space program was the Apollo-Soyuz Test Project in 1975, launched during the period detente in the Cold War. A Soyuz spacecraft from the USSR and an Apollo spacecraft from the United States linked up in orbit and the crews exchanged greetings and visited each other’s spacecraft. This is a group photo of the two crews, the Americans on the left in brown and the Soviets on the right in green. (NASA photo)

Apollo-Soyuz Test Project illustration

An illustration of the Apollo spacecraft (on the left) linking up with the Soyuz in ASTP. (NASA photo)

Space shuttle Atlantis docked with space station Mir

Space shuttle Atlantis docked with Russian space station Mir during the Shuttle-Mir program, July 1995. The Shuttle-Mir program ran from 1995 to 1998. (NASA photo)

Expedition One crew in Red Square

After Shuttle-Mir, joint crews took up residence on the International Space Station, starting in November 2000. Here the Expedition One crew are seen visiting Red Square in Moscow. The Russian crew members are on the left and right and the American member is in the center looking at the camera. (NASA photo)

Quick thought: History and rocketry

Demo-2 rocket launch

The Demo-2 mission lifts off from Kennedy Space Center, Florida on May 30, 2020. (Image credit: NASA/Bill Ingalls.)

Almost two months ago, SpaceX and NASA launched a rocket with two astronauts on board from Florida to the International Space Station. The mission, dubbed Demo-2 or “Launch America,” got a lot of media coverage, in a media landscape that was desperate to talk about literally anything besides the Coronavirus pandemic that had brought economic and social life to a standstill in the United States and much of the rest of the world.

Even without Coronavirus, Demo-2 likely still would have gotten plenty of attention. Not only was this the first time astronauts were launched into space from the United States since the Space Shuttle was retired nine years ago, it was also a very cool mission. The rocket was a SpaceX Falcon 9, which has a reusable first stage that lands tail-first on a barge in the ocean. (Except for the Solid Rocket Boosters of the Space Shuttle, first stages of rockets generally fall into the ocean and are never recovered.) The spacecraft that the astronauts rode in, SpaceX Dragon, has a sleek interior design that seems to have gotten aesthetic inspiration from Star Trek.

Both NASA and SpaceX had public affairs announcers that covered the mission, and they gushed about how this mission was “one for the history books,” and similar phrases. This was the first time that a private company had launched astronauts to the International Space Station (albeit with funding and lots of other support from NASA), but otherwise I’m not sure what was really historic about the mission. As David Edgerton points out in The Shock of the Old (2007), rocketry on the whole hasn’t been all that significant in human history. Just because something is visible to the public—in this case, through newspapers, broadcast television, Life magazine, National Geographic, NASA.gov, Twitter, and YouTube—doesn’t mean that it is historically significant. I would add that coolness also does not equal historical significance.

If anything, the Demo-2 mission was one for the space trivia books, not history books. I doubt that anybody but space enthusiasts will remember that this mission even happened 10 or 20 years from now.

India’s launch into space activity

On the evening of November 21, 1963, a two-stage Nike-Apache rocket shot skyward from Thumba, a spot on the Malabar Coast of southern India. The rocket carried a sodium-vapor experiment that produced a cloud as the rocket ascended. The zigzag shape of the cloud indicated the prevailing winds at different altitudes. Observers at stations as far as 250 km (155 mi) away reported spotting the cloud with the naked eye.1

It was the first launch of a research rocket in India—a nation that would go on to develop its own indigenous satellite launchers. But in 1963, India still had the better part of two decades to go before its first successful satellite launch with the SLV-3 booster. India’s first research rocket launch was a cooperative effort with the United States and France. The American space agency NASA provided the Nike-Apache rocket, which was based on the first stage of a retired surface-to-air missile. France’s CNES provided the sodium-vapor experiment. As Homi Bhabha, chairman of the Indian Atomic Energy Commission, remarked after the launch, “The NASA has launched us into space activity. We hope this is the beginning of increasing and continuing cooperation between India and the US.”2

As part of the sounding rocket program, NASA brought a small team of Indian scientists and engineers to the United States for training at the agency’s Langley, Goddard, and Wallops Island facilities. One of the men on this team was A.P.J. Abdul Kalam, who would gain distinction from his later work on Indian space launchers and missiles, then cap off his career with a term as President of India. At NASA, the team received basic technical training for assembling imported rockets, launching, tracking, and data acquisition. Their hosts at NASA did not give them any information about building their own rockets. The Nike-Apache launch in India is a case of the transfer of a technological artifact (in this case, a rocket), but not the knowledge of how it was made. It would ultimately be the French who passed knowledge about rocket construction on to the Indian program, when they provided for the license manufacture of their Centaure rocket in India.3

The launch of a NASA rocket was an example of especially close Indo-American technical cooperation in the early independence period. That same month, the US Air Force offered training to the Indian Air Force on portable radar sets that the American government had donated to India. The Nike-Apache and its launching equipment likely came to India on one of the same cargo planes that brought supplies for Exercise Shiksha, as the joint air exercise was called. Throughout the 1960s and beyond, the United States would continue to offer technical aid to India on programs as diverse as agriculture, public health, and power generation. But except for the period around Exercise Shiksha, the United States hoped to avoid alienating its ally Pakistan by keeping its distance from any Indian programs with a clear military application. Despite Dr. Bhabha’s hopes for increasing Indo-American cooperation, rocketry had an especially obvious military application. Thus it would be the French, rather than the Americans, who would pass knowledge of rocket construction on to India.

  1. Gopal Raj, Reach for the Stars: The Evolution of India’s Rocket Programme (New Delhi: Viking, 2000), 16-17. []
  2. “India fires first rocket for space research,” Hindustan Times, November 22, 1963. []
  3. A.P.J. Abdul Kalam, with Arun Tiwari, Wings of Fire: An Autobiography (Hyderabad: Universities Press, 1999), 37-9; Raj, Reach for the Stars, 32. Note that the license-production of French rockets was only a part of Indian rocket development. There was also a parallel program of Indian-designed sounding rockets, known as Rohini. Knowledge from Rohini as well as Centaure was applied in the SLV-3 program. []

Powered by WordPress & Theme by Anders Norén